Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improvement in stability of bilayer organic solar cells using an ultra-thin Au layer

Identifieur interne : 000B32 ( Main/Repository ); précédent : 000B31; suivant : 000B33

Improvement in stability of bilayer organic solar cells using an ultra-thin Au layer

Auteurs : RBID : Pascal:13-0119391

Descripteurs français

English descriptors

Abstract

In order to improve the stability of organic solar cells based on CuPc/C60 planar heterojunction, an ultra-thin layer of Au (∼2 nm) is inserted between CuPc and PEDOT:PSS. Although, short circuit current density (Jsc) and open circuit voltage (Voc) of the device containing Au layer are less than those of the Au-free one, it has comparable power conversion efficiency (ηp) owing to its higher fill factor (FF). In addition, this ultra-thin Au layer enhances the stability of the device significantly. After a month under ambient condition, the device with "indium thin oxide (ITO)/PEDOT:PSS/Au" anode reaches 67% of its initial ηp value, while the ηp of the cell with "ITO/PEDOT:PSS" anode drops to less than half of its initial value. The improvement in stability is ascribed to the more durable Au/CuPc interface in contrast to the PEDOT:PSS/CuPc interface.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0119391

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Improvement in stability of bilayer organic solar cells using an ultra-thin Au layer</title>
<author>
<name>SAEED SALEH ARDESTANI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Thin Film Laboratory, School of Physics, Iran University of Science and Technology (IUST)</s1>
<s2>Narmak 16846, Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Narmak 16846, Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ajeian, Rasul" uniqKey="Ajeian R">Rasul Ajeian</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Thin Film Laboratory, School of Physics, Iran University of Science and Technology (IUST)</s1>
<s2>Narmak 16846, Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Narmak 16846, Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MOOSA NAKHAEE BADRABADI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Thin Film Laboratory, School of Physics, Iran University of Science and Technology (IUST)</s1>
<s2>Narmak 16846, Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Narmak 16846, Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tavakkoli, Mohammad" uniqKey="Tavakkoli M">Mohammad Tavakkoli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Thin Film Laboratory, School of Physics, Iran University of Science and Technology (IUST)</s1>
<s2>Narmak 16846, Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Narmak 16846, Tehran</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0119391</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0119391 INIST</idno>
<idno type="RBID">Pascal:13-0119391</idno>
<idno type="wicri:Area/Main/Corpus">001124</idno>
<idno type="wicri:Area/Main/Repository">000B32</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Bilayers</term>
<term>Conversion rate</term>
<term>Copper complex</term>
<term>Energy conversion</term>
<term>Fill factor</term>
<term>Fullerenes</term>
<term>Heterojunction</term>
<term>Indium oxide</term>
<term>Metallophthalocyanine</term>
<term>Open circuit voltage</term>
<term>Organic solar cells</term>
<term>Planar technology</term>
<term>Polymer blends</term>
<term>Short circuit currents</term>
<term>Styrenesulfonate polymer</term>
<term>Thin film</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Ultrathin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire organique</term>
<term>Technologie planaire</term>
<term>Hétérojonction</term>
<term>Courant court circuit</term>
<term>Tension circuit ouvert</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Facteur remplissage</term>
<term>Addition étain</term>
<term>Anode</term>
<term>Bicouche</term>
<term>Couche ultramince</term>
<term>Couche mince</term>
<term>Phtalocyanine métallique</term>
<term>Complexe de cuivre</term>
<term>Fullerènes</term>
<term>Styrènesulfonate polymère</term>
<term>Thiophène dérivé polymère</term>
<term>Mélange polymère</term>
<term>Oxyde d'indium</term>
<term>C60</term>
<term>ITO</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to improve the stability of organic solar cells based on CuPc/C
<sub>60</sub>
planar heterojunction, an ultra-thin layer of Au (∼2 nm) is inserted between CuPc and PEDOT:PSS. Although, short circuit current density (J
<sub>sc</sub>
) and open circuit voltage (V
<sub>oc</sub>
) of the device containing Au layer are less than those of the Au-free one, it has comparable power conversion efficiency (η
<sub>p</sub>
) owing to its higher fill factor (FF). In addition, this ultra-thin Au layer enhances the stability of the device significantly. After a month under ambient condition, the device with "indium thin oxide (ITO)/PEDOT:PSS/Au" anode reaches 67% of its initial η
<sub>p</sub>
value, while the η
<sub>p</sub>
of the cell with "ITO/PEDOT:PSS" anode drops to less than half of its initial value. The improvement in stability is ascribed to the more durable Au/CuPc interface in contrast to the PEDOT:PSS/CuPc interface.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Improvement in stability of bilayer organic solar cells using an ultra-thin Au layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SAEED SALEH ARDESTANI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AJEIAN (Rasul)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MOOSA NAKHAEE BADRABADI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TAVAKKOLI (Mohammad)</s1>
</fA11>
<fA14 i1="01">
<s1>Thin Film Laboratory, School of Physics, Iran University of Science and Technology (IUST)</s1>
<s2>Narmak 16846, Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>107-111</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000173215070150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0119391</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In order to improve the stability of organic solar cells based on CuPc/C
<sub>60</sub>
planar heterojunction, an ultra-thin layer of Au (∼2 nm) is inserted between CuPc and PEDOT:PSS. Although, short circuit current density (J
<sub>sc</sub>
) and open circuit voltage (V
<sub>oc</sub>
) of the device containing Au layer are less than those of the Au-free one, it has comparable power conversion efficiency (η
<sub>p</sub>
) owing to its higher fill factor (FF). In addition, this ultra-thin Au layer enhances the stability of the device significantly. After a month under ambient condition, the device with "indium thin oxide (ITO)/PEDOT:PSS/Au" anode reaches 67% of its initial η
<sub>p</sub>
value, while the η
<sub>p</sub>
of the cell with "ITO/PEDOT:PSS" anode drops to less than half of its initial value. The improvement in stability is ascribed to the more durable Au/CuPc interface in contrast to the PEDOT:PSS/CuPc interface.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Technologie planaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Planar technology</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Tecnología planar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Anode</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Anode</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Couche ultramince</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Ultrathin films</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Phtalocyanine métallique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Metallophthalocyanine</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Ftalocianina metálica</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Complexe de cuivre</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Copper complex</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cobre complejo</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Fullerènes</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Fullerenes</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>C60</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>091</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000B32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0119391
   |texte=   Improvement in stability of bilayer organic solar cells using an ultra-thin Au layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024